The role of the geomodel at University of Pécs on enhancing the efficiency of problem-based geography education

SZABOLCS CZIGÁNY – LÁSZLÓ NAGYVÁRADI – ERVIN PIRKHOFFER – ÁKOS HALMAI – KITTI KLIMÁSZ – KINGA KISS – ZSUZSANNA M. CSÁSZÁR – JÁNOS VARJAS

University of Pécs, Institute of Geography 

a sczigany@gamma.ttk.pte.hu, b cszsuzsa@gamma.ttk.pte.hu

 

For the article, please visit this site. The language of article is Hungarian. You can download it also clicking here.

For the related issue of GeoMetodika (Volume 2, Issue 1), please visit this site. The language of GeoMetodika is Hungarian.

 

Small-scale modelling is a widespread method for the simulation of large-scale natural processes in the fields of hydrology, hydraulics, geology, geomorphology and river mechanics. At the University of Pécs a computer-controlled sand table (hydrologic and tectonic geomodel) was put into operation in 2014 for both research and educational purposes. The table can be tilted at any arbitrary angle between ±7.5° along its longitudinal axis, and by ±10° along its transversal axis. Lateral deformation of the medium is simulated through the displacement of four lateral pushblades to the extent of 100 mm. The four interior units can be uplifted to model orogenic processes. All motions in the flume are executed by computer-governed electroengines.

Geomodels, flumes and stream tables may ease the understanding of geographic processes through problem-oriented based teaching methods and hand-on-experiences. The benefits of problem-based learning (PBL) have also been confirmed during the visits of various age groups at the geomodel. Our observation during these demonstration sessions revealed one of the major weaknesses of the Hungarian educational system, i.e. teachers are forced to follow the conventional geographical curricula, therefore hindering their adaptation to cutting-edge educational methods and the learning-by-doing approach of the Western European and North American syllabi.

 

Keywords: computer-controlled geomodel, problem-based learning, geography education, popular science

 

Lehetőségek a problémaorientált földrajzoktatás hatékonyságának növelésére a Pécsi Tudományegyetem terepasztala segítségével

CZIGÁNY SZABOLCS – NAGYVÁRADI LÁSZLÓ – PIRKHOFFER ERVIN – HALMAI ÁKOS – KLIMÁSZ KITTI – KISS KINGA – M. CSÁSZÁR ZSUZSANNA – VARJAS JÁNOS

Pécsi Tudományegyetem Földrajzi Intézet

a sczigany@gamma.ttk.pte.hu, b cszsuzsa@gamma.ttk.pte.hu

Ez a cikk a GeoMetodika folyóirat 2018. évi 1. számában (2. évf. 1. szám) jelent meg. A GeoMetodika folyóirat összes megjelent számát itt találja.

 

Bevezetés

A világban történt eseményekről szinte azonnal tájékozódunk a médiának köszönhetően, így a természeti katasztrófákról is. Arról azonban kevés információt szerezhetünk, hogy mekkora felelőssége van ebben az emberiségnek, pedig már kutatások bizonyították, hogy az antropogén hatások teljesen átformálták, egyre inkább átformálják környezetünket, növelik a természeti veszélyeket és hozzájárulnak az éghajlatváltozáshoz. E téren a földrajzoktatásra komoly feladat hárul; a médiában terjedő álhírekkel szemben a lejátszódó folyamatok okainak és következményeinek feltárására kell fókuszálnia. Azonban az oktatásban annak is meg kell jelennie, hogy miként tudjuk megelőzni vagy mérsékelni a természeti és környezeti katasztrófák okozta károkat.

A fizikai kisminta modellek napjainkban újra reneszánszukat élik. Ez a folyamat részben annak is köszönhető, hogy a hidrológiai modellek egyre bonyolultabbak és egyre nehezebben kezelhetőkké váltak, illetve hogy a számítógépes reprezentációk egyre magasabb dimenziószámú megközelítéseket alkalmaznak (Jonassen, D. H. – Reeves, T. C. 1996), emiatt nagy számolási kapacitást igényelnek például drága szuperszámítógépek segítségével. Így a fizikai kisminta modellek, mint például a geomodellek, terepasztalok vagy áramlási modellek fontos eszközei lehetnek a problémaalapú oktatásnak, amelynek térhódítása az angolszász világban és Nyugat-Európában egyre nyilvánvalóbb. Ugyanis napjainkra egyértelművé vált, hogy a hagyományos oktatási módszerek egyre kevésbé hatékonyak, szükség van az innovációra, demonstrációra, valamint ezek során egy irányított tudásátadásra az új típusú tanuláshoz (Spronken-Smith, R. et al. 2007; 2011; 2012). A munkaerőpiacon nem az ismeret jellegű tudásnak van prioritása, hanem sokkal inkább a képességeknek, készségeknek, mint például a problémamegoldás képessége vagy alkalmazkodóképesség. Nem véletlen, hogy a PISA tesztek – amelyek 2000 óta háromévente mérik a diákokat – a tudás mellett kompetenciákat, például 2003-tól a komplex problémamegoldó képességet is mérik. Ilyen típusú gondolkodáshoz egyértelműen szükség van a tanulók aktivizálására, együttműködésére, ehhez pedig újfajta tanulási-tanítási módszerekre, mint a problémaalapú, kutatásalapú vagy dizájnalapú tanulás.

A problémaalapú tanulásProblem Based Learning, rövidítve PBL – az orvosképzésben jelent meg először az 1960-as években, ahol diagnosztikai eljárásokban alkalmazták, majd átvette ezt a jogi, a műszaki és a szociálismunkás-képzés is. A természettudományok oktatása során a kurzusok bevezető óráin alkalmazzák (Allen, D. E. et al. 1996). A neveléstudományban egyrészt tanítási-tanulási módszer (Barrows, H. S.–Tamblyn, R. M. 1980), másrészt egyes kutatók (Walton, H. J. – Matthews, M. B. 1989) szerint oktatási stratégia, ahol a tanulók csoportokra bontva közösen oldanak meg egy életből kölcsönzött problémát; ehhez meg kell ismerniük a szóban forgó tudományterület ismeretanyagát, módszertanát, és építeniük kell előzetes tudásukra. A gyakorlatból vett példákkal úgy alakíthatjuk a tananyagot, hogy az motiválja a tanulókat (Boud, D. – Feletti, G. 1991, 1997). A tanulás hajtóereje maga a probléma, illetve annak megoldása lesz, így egy rendkívül sajátos, de célravezető tanulási környezet[1] jön létre. A PBL módszer nagy újítása, hogy a diákok nem a már elsajátított tanagyag gyakorlása céljából oldanak meg problémát, hanem az információk megtanulásának része a probléma (Molnár Gy. 2004). Ennek köszönhetően fejlődik a tanulók kritikai, analitikus és kreatív gondolkodása is (Arts, J. A. R. et al. 2002). A módszer hatékonyságát növelhetik a különböző infokommunikációs technikák, hiszen a világháló rengeteg lehetőséget nyújt a tájékozódásra. Érezhető emellett, hogy a PBL összeköthető a kutatásalapú tanulással, a projektmunkával, illetve a csoportban dolgozás lehetősége miatt a kooperatív technikákkal is. Mivel a diákok aktivizálódnak, maguk keresik a válaszokat és építik fel tudásukat, így a tanár szerep is változik, már nem a tudás egyedüli átadója lesz, hanem a csoportos folyamatokat, megbeszéléseket elősegítő folyamatvezető (facilitátor) szerepét tölti be (Spronken–Smith, R. et al. 2007; idézi Nagy L.-né 2010).

A dizájnalapú tanulásDesign Based Learning, rövidítve DBL – esetén a tanulók tudományos kísérletek tervezésében, sőt fejlesztésében vesznek részt (Anderson, R. D. 2006). A kutatásalapú tanulást (Inquiry Based Learning, rövidítve IBL) többen (Barron, B. D. – Hammond, L. 2008; Watson, M. 2008) tekintik a legátfogóbb módszernek, míg legkiterjedtebbnek a projektalapú tanulást, amely keretet nyújthat az összes önálló, megfigyeléses, problémamegoldó tanuláshoz (Schraw, G. et al. 2006). Mindhárom hasznos eszköze lehet a konstruktív pedagógiának, amely egyébként az elmúlt évtizedben számos ún. learning-by-doing módszert publikált. Ezek a tárgyalt adaptációk és alkalmazások remek példák a tudásalapú tanulásirányítási módszer újfajta megközelítéséhez (Agnew, C. 2001).

 

Kattintson ide a teljes cikk elolvasásához…